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DETERMINATION OF HEAT-TRANSFER COEFFICIENTS AT THE INLET INTO A POROUS 

BODY AND INSIDE IT BY SOLVING THE INVERSE PROBLEM 

A. P. Tryanin UDC 536.24 

An iterative algorithm is developed of searching these coefficients from data of 
nonstationary temperature measurements. 

A large number of experimental studies is devoted to the study of features of internal 
heat transfer. These studies are divided in [i] into two groups, depending on the method 
of determining the internal heat-transfer coefficient. A characteristic feature of most of 
the studies considered in [i] is the use of the assumption of negligibly small heat transfer 
at the inlet to a porous wall, which, as noted in [2], must lead to an enhanced experimentally 
determined ~v value in comparison with the true one. 

The real pattern of heat transfer at the inlet into a porous body can be described by 
means of a boundary condition of third kind, used in [3], where an algorithm is provided for 
determining the coefficients of internal heat transfer and effective thermal conductivity of 
a porous plate by solving the inverse problem. 

The practical use of this algorithm is rendered difficult in several cases due to the 
absence of verifiable information on values of the heat-transfer coefficient at the inlet 
into the plate. Therefore, in searching ~v from temperature measurements, for example, ob- 
tained in the process of nonstationary cooling of a sample heated by gas blowing, it is ad- 
visable to determine simultaneously the heat-transfer coefficients at the inlet into a porous 
body and inside it, as well as the effective thermal conductivity coefficient of a porous 
housing under conditions guaranteeing unique solution of the problem. 

In the present study we consider an algorithm of simultaneous search of ~v and s 0 under 
the assumption that the lSeff values are given accurately. The basic reason for this restric- 
tion is the complexity, as well as the impossibility of placing a thermocouple inside the 
porous structure due to the breakdown in the character of cooler filtration. Therefore, 
in most experimental investigations it is only possible to place two thermocouples at the 
surface boundaries of the plate. Under these conditions it is not possible to determine 
simultaneously all the heat-transfer characteristics mentioned above, and the original problem 
must be decomposed into several stages, such as an initial search of the effective thermal con- 
ductivity of a porous housing (for which one can use the algorithms derived in [3, 4]), and 
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then determine ~v and s 0 from results of temperature measurements in the presence of blowing 
coolers on the basis of the algorithm provided below. 

It has been shown in [i] that among the basic quantities determining the value of the 
internal heat-transfer coefficient are the characteristics of the porous medium, the thermo- 
physical properties of the cooler, and the blowing intensity. It must be expected that the 
same quantities are also decisive for the heat-transfer coefficient at the inlet into the 
porous structure. In this case only the blowing intensity can be varied during the experi- 
ment. On this basis we will seek the coefficients of internal heat transfer and of heat trans- 
fer at the inlet into the porous structure as functions of time. 

It is required to find the vector function {Ts(x, x), ~v(~), ~0(~)} from n known non- 
stationary temperature measurements across the plate, knowing the initial temperature distri- 
butions for the solid and gas phases, the time variation law of the cooler discharge, the 
hydraulic characteristics of the porous plate, and the dependence of the thermophysical char- 
acteristics of the blown in gas of the porous housing on the corresponding temperatures. As 
in an earlier study [3], it is assumed that the heat-transfer process in a porous body is 
described by one-dimensional nonstationary differential equations of heat propagation in a 
porous housing and a cooler, whose temperatures differ from each other, while as boundary 
conditions for calculating the thermal regime of a porous unbounded planar plate 0 s x s b 
on its external boundary we use boundary conditions of the second kind, while on the internal 
surface we use the third type. 

The mathematical description of the problem is: 

C~ OT~ __O (%~ aT s ~ a~(x) (T,~--Tg) § ( i )  
O----~ = Ox ~ J  1 --  H 

( OT~ ~ aT~ a._(_it ) a T g _  c3 ~'g'-'~ j - - P r J C p g - - - ' ~ - ~ - - - ( T s - - T g ) ,  O < x < b ,  O<T.~; ( 2 )  pCpg O"C C)X 

--%s c3T~ (0, "~) _ CZo (T s (0, "c) - -  Tgo); ( 3 )  
0x 

prOCpgrg (0, ~f) ~ pvCpgTgo -}- O~o (Ts (0, T) - -  Tgo); ( 4 ) 

_ % ,  OT~ (b, ,t) _ q(x); 
ax (5 )  

O2Tg (b, T) _ 0; ( 6 )  
c3x z 

Additional conditions are: 

T~(x, 0)=~]~(x), O~x<~b; (7) 
Tg (x, 0) = ~g (x), 0 < x < b; ( 8 )  

T, (xz, "r) = fi ('rl, 0 ~ xi ~ b. ( 9 )  

the equation of state of the gas 

and the modified Darcy law 

p = p -5~- Tg, ( i o )  

dp 
- -  ~ v +  ~pv 2. ( i i )  

d x  

The functions q(T), pv(x)~ fi(T), Ss(X), ~g(x), the porosity H, the hydraulic charac- 
teristics of the porous body, and the thermophysical characteristics of the porous structure 
and of the cooler are assumed given. 

For regularization of the established incorrect inverse problem, the stability of whose 
solution cannot be guaranteed in the general case [5], we use, as in [3, 4], an iterative 
regularization, based on a conjugate gradient algorithm with the condition of stopping the 
approximation process by a certain discrepancy criterion. 
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We turn to the extremal statement of the inverse problem (1)-(9): it is required to find 
the vector-function R = R(~v(~), %(~)), minimizing the mean square deviation 

Tm 

J(c%, a o ) =  .f ITs (& '  ~)--f z(x)lzd'r ( 1 2 )  
i=1 0 

under conditions (1)-(8). 

To calculate the gradient of the functional (12), we use the solution of the boundary- 
value problem, conjugate to the problems for incremental temperature fields in the solid and 
in the gas. 

We treat the boundary-value problem (1)-(8) as a multilayer one, where the boundaries 
of layers, identical in their thermophysical properties, coincide with the locations of the 
sealed thermocouples. An ideal contact is realized between layers, and the contact thermal 
resistances vanish, i.e., 

T~i (xi_.,, x) = Ts i+t (Xi+l ,  T), 

~T~; (x~+ 1, "t) 0T~+a (x~+~, "r) 
= , i = l , n - - 1 .  

@x Ox 

For varying components of the true vector R at small increments of Act v and A~ 0 the tom- 
peratures Tsi and Tg acquire small increments zi(x , 
value problem in the linear approximation: 

<) and u(x, ~), satisfying the boundary- 

Ano + u -  

; , i ~  -- O,x "z q- 1 ~ "  (u - -  zi) 1 - -  17 - -  

c3o~ v ha~ + u. 
~,Cptt O~ v OT g ( 14 ) OoC, gu OZX"u pv - -  (u -- z3  + (T~ i - -  Tg), 

O~---U-- = Ox --------~-'~" Ox H 11 

Xi<X<Xi.1, O~T~Tm, i = 1, n - -  1, 

z~(x, 0)=0, u(x, 0)=0, 
OX~zl (0, ~) 

= O~0Z 1 (0,  "t') -I- AGO (Ts, (0, "0 - -  Tg.); 
fix 

pv Gg+--5~g T~(O, ~) u(O, ~)=~oz~(O, ~)+ A~o(G,(O, ~)--T~o); 

dX~z~_ 1 (b, ~) 
- -  O; 

dx 

3Zu(b, x) _ O, 
@x z 

where the following conditions are satisfied at the layer joints 

Ozi(x~+,, "r) Oz~+ 1 (xi+ ,, z) 
8x 3x ' 

Z i ( X i + l ,  T) = Zi+ 1 ( X i + I ,  T), i = 1, n - -  I. 

For the linear incremental portions of the functional (12) we have 

( 1 5 )  

( 1 6 )  

(17) 

(18) 

(19)  

( 2 0 )  

n Trrt 
AJ (Aa,, Ao%) = 2 ~ .!' [r~ (xi, T ) - -  fi ('0] z~ (x~, z) d~. 

i = 1 0  

( 2 1 )  

The conjugate boundary-value problem is written in the form 

C8 c3r ~ 3z~ N _  ~ ( ~ tp ) 
d'r Ox 2 1 - -  17 ~ ' 

3q) = ~,g 3zq~ + pvCp c3q~ + 
--pCpg O~ c3x - - - 7  g Ox 

( 2 2 )  
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2 ITs, (0 ,  T) - -  f~ (T)I - I -  % 

~i m av (Ts i -- Tg) , (23) 
+ 1 -- 17 H c3Tg , 

&~x~x~+ I, i =  1, n--l, O ~ t < x , ~ ;  

pv 

~ (x, ~ )  = m (x, tin) = 0; (24)  

~g am (0, t) ] 

Ox I - O; (25) 6Cpg -- %(0' t) +~ 0r t) 
( C p g - ~ - ~  Tg(O , T)) cqx 

a C n _ ~ ( b ,  "~) . (26)  
~x 

(27)  

2 [T<~_r (b, t )  - -  [~ (T)] = %, 

m (0, t) = O; 

Cp(b, -c)-- Ore(b, ~).=0; (28)  
Ox 

-9[Tsi(xi' T)--f~(T)]=k~[ O~i-l(xz' oqq'~(x;, t ) ] . d . ~  ' (29)  

~1~-1 (xi, "~)= q'i(&~ T), i =  1, n - - 1 .  (30)  

Following transformations similar to those in [3], we obtain for the incremental inte- 
gral functional (21): 

,+ 

Xg am (0, "0 
dx 

(~Cp g 

, t h e n ,  

dJ 

] -- 1~1 (0, t) (Ts ,  (0, "0 - -  Tgo) A~ o 
) 
dr. 

(31) 

Since AJ = (J'u, AU)L 2 taking into account that ~v = ~v (~) and ~0 = ~0(~), we have 

~-1 *i+1 ( *~ m /dx: 
- - = - - 2  (Tsi--Tg) 1 - - H  H ' (32)  

i = l  x~ 

Xg 0m(0, t) ] 
OJ 6y 

= dCpg ) - - ~ i ( 0 ,  x) (Ts,(0, t)--.Tgo). (33)  
0~0 ~V (Cpg .Af- " W  Tg (0, T) 

g 

The p r o c e s s  o f  s u c c e s s i v e  a p p r o x i m a t i o n s  on t h e  b a s i s  o f  c o n j u g a t e  g r a d i e n t  method i s  
r e a l i z e d  by t h e  e q u a t i o n s :  

p(~+~) = p~).iy(~)G ~s~, 

where u = {Y~v' Y~0}' P = {~v, =0), G ={Gav, G~0} , G(s) o- -J'(S) + ~(S)G(s-1), J' = {J'av' 
J'a0}' Y is the depth of the slope, and s is the number 7 iterations. 

The conditions by which one determines the step values of the slope in each direction, 
the construction of the iteration process, and the adopted criteria of stopping the process 
are described in detail in [3]. 

Based on the algorithm developed we implemented a FORTRAN program on a B~SM-6 computer, 
in which case, as earlier, the differential equations (i), (2), (13), (14), (22), and (23) 
were approximated by means of a monotonic implicit difference scheme of second order of ac- 
curacy in the spatial coordinate and first order in time [6]. To solve the direct problem 
of heat transfer in a porous body, due to its nonlinearity iterations were realized in the 
coefficients with exit from the iteration procedure upon coincidence conditions within a given 
accuracy of temperature profiles in adjacent approximations. 
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TABLE i. Changes in Values of the Coefficients A~ and A 0 in 
Criterial Iteration Dependences (34), (35) 

Values of No. of iterations 
unknown 
quanlities 1 2 3 ] 4 5 6 7 

A~ 

Ao 

0,261 

0,4i2 

0,073 

0,571 

0,021 [ 0,014 

0,719 0,763 

0,01 

0,784 

0,007 

0,797 

0,006 

0,803 

The usefulness of this algorithm was verified on model examples. Related to the com- 
plexity mentioned of establishing thermocouples inside a porous structure, in most model 
examples s v and s 0 were reproduced from temperature measurements at the boundaries of the 
porous housing. 

In solving the model problems it was assumed that the porous plate of baked powder of 
stainless steel has a width of 4 mm. The temperature dependence of the effective thermal 
conductivity of a porous housing is described by the equation kSeff = 2.92"10 -3 + 4.5"10 -6. 
Ts, kW/m.deg, while the dependence for the bulk heat capacity is C s = 1252.37 + 0.5445.Ts, 
kJ/mS.deg. 

The viscous and inertial resistance coefficients were taken equal to s = 2.333-10 zl I/m 2 
and 8 = 5.7267.10 S i/m. The plate porosity was assumed equal to 0.3455. The mean particle 
size in the sample was 0.63 mm. 

The cooling gas was chosen to be air with inlet temperature at the porous body of 300~ 
during the whole filtration time. The thermophysical characteristic values of the cooler were 
selected from [7]. 

It was assumed that the heat-transfer coefficient values were determined from results 
of temperature measurements, obtained by cooling the porous sample to 750~ by blowing air 
through it with time discharge 

pv(T) z 1.5--O.l%kg/mZ-sec. 

In calculating the temperature values of the porous housing at the boundary surfaces, 
used in solving the inverse problem as a result of measurements, the heat-transfer coeffi- 
cients at the inlet into the porous sample and inside it were determined by the equations: 

av = 0.004 ~g pv(~!a) , kW/m s .deg, 
(~1=)~ ~ ( 34 ) 

~o = 0.8. Kz pv{~/~) , kW/m 2-deg. (35)  
~/~ ~% 

In solving the given model example the reproduced quantities were the coefficients I v 
and A0, whose values at the beginning of the iterative approximation process were taken to 
be i and 0, respectively. The results of solving the model example at the exact inlet data 
are given in Table I. 

Figure I shows the results of solving the model example for determining the heat-transfer 
coefficients for cooling blow-in constant in time. The isofunctional lines were constructed 
from the results of numerical Calculations in the regions a v = 250-350 kW/mS.deg, s 0 = 0-0.35 
kW/m2"deg with steps Aa v = 5 kW/mS.deg and A% = 0.05 kW/ma.deg. As initial approximations 
we took Sv ~ = 350 kW/mS-deg and %o = 0 kW/m2"deg. Following seven iterations, values of a v 
and a 0, practically indistinguishable from s v = 250 kW/m~.deg and % = 0.35 kW/m=.deg, taken 
as "accurate," were obtained. The maximum difference between the calculated and "experi- 
mental" temperature values in locations of "sealed" thermocouples was 0.12 ~ for a maximum 
temperature of porous sample 750~ 

In determining ~v and % from perturbed values to the normal law of the wall temperature, 
obtained as a result of solving the heat-transfer problem in a porous body, the convergence 
of the iteration process worsened substantially, since the sensitivity of the inverse problem 
dropped. Since in carrying out a thermal experiment the measured temperature values are al- 
ways determined with some error, the actual physical experiment must be carried out in regions 
of maximum sensitivity of the minimizing functional to changes in the unknown quantities, 
i.e., to results of the planned experiment. 
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Fig. I. Search trajectory of the constant 
=v and s 0 values (dotted line). The solid 
lines are isofunctional lines [i) J(sv, 
s 0) = i0; 2) i00; 3) 200; 4) 500; 5) i000; 
6) 5000; 7.) i0,000]; I) are points of the 
plane (Sv (k), ~0(k)), where k is the number 
of iterations. 

As a whole the mathematical simulation performed has shown the effectiveness of the al- 
gorithm devised for determining heat-transfer coefficients. 

NOTATION 

x, coordinate; b, thickness of the porous body; n, number of temperature measurements 
of the porous body; C s and Xs, coefficients of bulk heat capacity and effective thermal con- 
ductivity of the porous body; p, Cp, X, p, density, specific heat capacity, thermal conduc- 
tivity, and viscosity of the blown gas; T, temperature; s v and s0, heat-transfer coefficients 
inside the porous body and at the inlet into it; pv, blowing intensity; ~, time; ~m, duration 
of the experiment; p, pressure; M, molecular weight of the gas; ~, universal gas constant; 
s, 6, hydraulic resistance coefficients of the porous plate; 9, porosity; q, thermal flux to 
the wall at the external boundary; qv, intensity of internal heat release ~, ~, conjugated 
variables; and s and g, subscripts for the solid and gas phases. 
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